Galois descent of additive invariants

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois Descent

Let L/K be a field extension. A K-vector space W can be extended to an L-vector space L⊗KW , and W embeds into L⊗KW by w 7→ 1⊗w. Under this embedding, when W 6= 0 a K-basis {ei} of W turns into an L-basis {1⊗ ei} of L⊗KW . Passing from W to L⊗KW is called ascent. In the other direction, if we are given an L-vector space V 6= 0, we may ask how to describe the K-subspaces W ⊂ V such that a K-basi...

متن کامل

Galois invariants of dessins d’enfants

The two main problems of the theory of dessins d’enfants are the following: i) given a dessin, i.e., a purely combinatorial object, find the equations for β and X explicitly; ii) find a list of (combinatorial? topological? algebraic?) invariants of dessins which completely identify their Gal(Q̄/Q)-orbits. The second problem can be interestingly weakened from Gal(Q̄/Q) to ĜT , but it remains absol...

متن کامل

Iwasawa invariants of galois deformations

of the absolute Galois group of a number field F . Assume that ρ̄ is ordinary in the sense that the image of any decomposition group at a place v dividing p lies in some Borel subgroup Bv of G. Assume also that ρ̄ satisfies the conditions of [11, Section 7] which guarantee that it has a reasonable deformation theory; see Section 3.1 for details. In this paper we show that the Iwasawa invariants o...

متن کامل

Two Step Descent in Modular Galois

We propound a Descent Principle by which previously constructed equations over GF(q n)(X) may be deformed to have incarnations over GF(q)(X) without changing their Galois groups, where q = p u > 1 is a power of a prime p and n is a positive integer. Currently this is achieved by starting with a vectorial (= additive) q-polynomial of q-degree m with Galois group GL(m; q) where m is any positive ...

متن کامل

Galois Descent and Severi-brauer Varieties

We say an algebraic object or property over a field k is arithmetic if it becomes trivial or vanishes after finite separable base extension. Since such objects or properties owe their existence to the presence of “arithmetic gaps” in k, i.e., the failure of k to be algebraically closed, we view them as responses to specific arithmetic properties of k, and we study them in order to gain insight ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2014

ISSN: 0024-6093

DOI: 10.1112/blms/bdt108